Spatial Monitoring of Wafer Map Defect Data Based on 2D Wavelet Spectrum Analysis
نویسندگان
چکیده
منابع مشابه
Defect detection of IC wafer based on two-dimension wavelet transform
Defect detection of integrated circuit (IC) wafer based on two-dimension wavelet transform (2-D DWT) is presented in this paper. By utilizing the characteristics many of the same chips in a wafer, three images with defects located in the same position and different chips are obtained. The defect images contain the standard image without any defects. 2-D DWT presented in the paper can extract th...
متن کاملFaults and fractures detection in 2D seismic data based on principal component analysis
Various approached have been introduced to extract as much as information form seismic image for any specific reservoir or geological study. Modeling of faults and fractures are among the most attracted objects for interpretation in geological study on seismic images that several strategies have been presented for this specific purpose. In this study, we have presented a modified approach of ap...
متن کاملBayesian Analysis of Censored Spatial Data Based on a Non-Gaussian Model
Abstract: In this paper, we suggest using a skew Gaussian-log Gaussian model for the analysis of spatial censored data from a Bayesian point of view. This approach furnishes an extension of the skew log Gaussian model to accommodate to both skewness and heavy tails and also censored data. All of the characteristics mentioned are three pervasive features of spatial data. We utilize data augme...
متن کاملSpatial Data Clustering based on Self Organizing Map
Recently, research area in neural network based spatial analysis have been receiving increasing attention in the last few years. There are number of reasons and the strongest appeal of Artificial Neural Network (ANN) is the suitability for machine learning in computational adaptivity. Machine learning in computational neural network consist of adjusting connection weights to improve the perform...
متن کاملProcess Monitoring based on Nonlinear Wavelet Packet Principal Component Analysis
For using process operational data to realize process monitoring, kinds of improved Principal Components Analysis (PCA) have been applied to cope with complex industrial processes. In this paper, a novel nonlinear wavelet packet PCA (NLWPPCA) method, which combines input training network with wavelet packet PCA, is proposed. Wavelet packet PCA integrates ability of PCA to de-correlate the varia...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Applied Sciences
سال: 2019
ISSN: 2076-3417
DOI: 10.3390/app9245518